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Signed message

I We would like to have:
SHA3 is collision resistant,
and therefore GnuPG-SHA3 is unforgeble

I The problem is:
What shall “SHA3 is collision resistant” even mean?
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What shall “collision resistant” mean?

Computer science guy
I It shall be very hard to find a collision.

I For example: It shall take more that 2100 operations.
I Key negative example: MD5 is not collision resistant, since collisions can be found within

15 – 30 minutes.

Math guy

I For any function h:
A collision is a pair (x ,y) with x 6= y and h(x) = h(y)

I For a Hash function h : D −→ R we have card(D) > card(R).
I There always exists a collision x ,y .

I So no “real” hash function is collision free.
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The math guy’s fastest attack

I int main() {
std::cout << "x,y" << std::endl;
return 0;

}

I Complexity: constant

I The attack always exists

I Computer science guy: “What!?” You write down an “attack” without knowing the attack?

I Math guy: “Yes, it exists” ...
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What shall “collision resistant” mean?

Theoretical cryptographer

I The mathematician is right, but the conclusion is not acceptable.

I Therefore, we introduce a parameter and look at it from an asymptotic point of view.

I We look at attackers running in polynomial time, talk about success probability.

I And then later we fix the parameter and apply this to a “real” system.
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Variable output length

I We have h = (hs)s with hs : {0,1}∗→{0,1}`(s) (security parameter s)

I Attacker A gets 1`(s) as an input, outputs x ,y

I Collision resistance: ∀n : ∃s0 : ∀s : s > s0⇒ P[x 6= y ∧hs(x) = hs(y)] < 1
`(s)n

I (after Rogaway, 2007)
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Artifact: `

I Suppose the family h = (hs)s is collision free.
What can we then conclude about hs0 for a particular paramater s0?

I Strictly speaking nothing:

I Suppose h is collision resistant and h∗s =

{
hs, if l(s) 6= 128,

MD5, if l(s) = 128.
Then h∗ is also collision resistant by the definition.

I But MD5 is still broken ...

I Such a family h∗ might seem to be “artificially constructed”, but maybe not ...
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Keyed hash functions

I hs,k : {0,1}∗→{0,1}l(s) (security parameter s, key k )

I Attacker As reads k , outputs x ,y

I collision resistant: ∀n : ∃s0 : ∀s : s > s0⇒ P[x 6= y ∧hs,k (x) = hs,k (y)] < 1
l(s)n

I (after Damgard 1987)

I Allows working with As working on fixed output lengths

I Might seem to be a good solution: Not asymptotic, does not immediately lead to a “trivial”
attack.

Claus Diem and dreiwert Provable insecurity

mailto:dreiwert@quidecco.pl


Hash functions in theory and practice
Constructive logic

Keyed hash functions

I hs,k : {0,1}∗→{0,1}l(s) (security parameter s, key k )

I Attacker As reads k , outputs x ,y

I collision resistant: ∀n : ∃s0 : ∀s : s > s0⇒ P[x 6= y ∧hs,k (x) = hs,k (y)] < 1
l(s)n

I (after Damgard 1987)

I Allows working with As working on fixed output lengths

I Might seem to be a good solution: Not asymptotic, does not immediately lead to a “trivial”
attack.

Claus Diem and dreiwert Provable insecurity

mailto:dreiwert@quidecco.pl


Hash functions in theory and practice
Constructive logic

Keyed hash functions

I hs,k : {0,1}∗→{0,1}l(s) (security parameter s, key k )

I Attacker As reads k , outputs x ,y

I collision resistant: ∀n : ∃s0 : ∀s : s > s0⇒ P[x 6= y ∧hs,k (x) = hs,k (y)] < 1
l(s)n

I (after Damgard 1987)

I Allows working with As working on fixed output lengths

I Might seem to be a good solution: Not asymptotic, does not immediately lead to a “trivial”
attack.

Claus Diem and dreiwert Provable insecurity

mailto:dreiwert@quidecco.pl


Hash functions in theory and practice
Constructive logic

Keyed hash functions

I hs,k : {0,1}∗→{0,1}l(s) (security parameter s, key k )

I Attacker As reads k , outputs x ,y

I collision resistant: ∀n : ∃s0 : ∀s : s > s0⇒ P[x 6= y ∧hs,k (x) = hs,k (y)] < 1
l(s)n

I (after Damgard 1987)

I Allows working with As working on fixed output lengths

I Might seem to be a good solution: Not asymptotic, does not immediately lead to a “trivial”
attack.

Claus Diem and dreiwert Provable insecurity

mailto:dreiwert@quidecco.pl


Hash functions in theory and practice
Constructive logic

Keyed hash functions

I hs,k : {0,1}∗→{0,1}l(s) (security parameter s, key k )

I Attacker As reads k , outputs x ,y

I collision resistant: ∀n : ∃s0 : ∀s : s > s0⇒ P[x 6= y ∧hs,k (x) = hs,k (y)] < 1
l(s)n

I (after Damgard 1987)

I Allows working with As working on fixed output lengths

I Might seem to be a good solution: Not asymptotic, does not immediately lead to a “trivial”
attack.

Claus Diem and dreiwert Provable insecurity

mailto:dreiwert@quidecco.pl


Hash functions in theory and practice
Constructive logic

Keyed hash functions

I hs,k : {0,1}∗→{0,1}l(s) (security parameter s, key k )

I Attacker As reads k , outputs x ,y

I collision resistant: ∀n : ∃s0 : ∀s : s > s0⇒ P[x 6= y ∧hs,k (x) = hs,k (y)] < 1
l(s)n

I (after Damgard 1987)

I Allows working with As working on fixed output lengths

I Might seem to be a good solution: Not asymptotic, does not immediately lead to a “trivial”
attack.

Claus Diem and dreiwert Provable insecurity

mailto:dreiwert@quidecco.pl


Hash functions in theory and practice
Constructive logic

Artifact: k

I But: Real hash functions normally don’t have keys

I Possible interpretation in some cases: key = initialization vector

I But then, free-start collision attacks are being analyzed

I But without variable (!) k , As can always be the trivial attacker

I Assume h being collision resistant and

h∗s,k =

{
hs,k , if l(s) 6= 128,

MD5, if l(s) = 128∧ k = k0,

I So, strictly speaking from “h is collision resistant” we still cannot conclude anything about
“concrete hash functions”.
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Practical security

How's it going?

We can prove
that the new CPU
works as specified,
when the register width
approaches infinity.

Excellent,
so let's go in production
using 64 bit registers

No point doing so.
For every fixed register width,
the proof does not say anything.

Figure: Drawings: xkcd.com, modification to text (CC BY-NC 2.5)

Claus Diem and dreiwert Provable insecurity

https://creativecommons.org/licenses/by-nc/2.5/
mailto:dreiwert@quidecco.pl


Hash functions in theory and practice
Constructive logic

“Provably secure” hash functions

I collision resistant hash functions according to these definitions can be constructed

(under suitable assumption!).

I e.g. VSH, ECOH, FSB

I Often slow and of little practical relevance

I Who decides about the length and the key to use?
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First conclusions

I Problematic to characterize families of functions when seeking for results on a specific
hash functions

I Where does the (existing) attacker A come from?

I Explicit precomputation: Apre computes attacker A

I Cost of attack: e.g. TIME(Apre) + TIME(A)
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I An idea (after Bernstein and Lange 2012):
Size limitation for Apre

I Outrules trivial attacks for sufficiently large output lengths

I Still not useful for practically used hash functions.
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Fundamental issue remains

I We know: If a Hash function h is collision resistant GnuPG-h is unforgable.

I We want to argue that some “real” Hash function h is collision resistant.

I But such an h is never collision resistant.

I Only in the asymptotic setting or in the Random Oracle model this can be proven.

I So usually the known proofs are applied where they cannot really be applied

I Is this really what we expect from a „proof“?
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Interpretation of proofs

It can be shown 
that the new signature scheme
has a weakness.

But well-known cryptographers
say that the weakness

is not of practical relevance.
At least we can prove
the security of the
encryption.

But it is assumed that
the proof methology does

not allow conclusions about
practical security.

Figure: Drawings: xkcd.com, modification to text (CC BY-NC 2.5)
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I Language consisting of: ∨, ∧, ¬, =⇒ , ∃, ∀ and symbols

I Problem may be caused by the meaning of the symbols
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I Symbols as in classical logic

I Meaning partially different

I “x exists” means “we can construct x”
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From proofs to algorithms

I BHK interpretations give a meaning to constructive proofs.

I (after Brouwer-Heyting-Kolmogorov, more seldomly Brouwer-Heyting-Kreisel)

I Realizations formalize these interpretations.

I Realizations have a strong relationship to algorithms
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I defined inductively over the structure of the proven formula
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I 〈a,b〉 realizes A∧B iff a realizes A and b realizes B

I Interpretation: both conjuncts must be proved

I Meaning as in classical logic
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I structure: ¬A

I f realizes ¬A iff. f realizes A⇒ 0 = 1

I Interpretation: derive a contradiction from any proof for A

I Meaning weaker as a negation in classical logic

I A⇒¬¬A, but not necessarily ¬¬A⇒ A
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I structure: ∃x : A

I 〈w ,a〉 realizes ∃x : A iff. a realizes A[x/w ]

I Interpretation: name a witness w , and prove that A[x/w ] holds

I Stronger meaning as an existential quantification in classical logic
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I Variables l where l ∈ L
I Applications AB where {A,B} ⊂ Λ

I Abstractions λx : A where x ∈ L and A ∈ Λ
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Lambda calculus

I Lambda calculus on lambda expressions through beta reduction

I (λx : A)B→
β

A[x/B] (A, where occurrences of x are substituted by B)

I AB→
β

AC, where B→
β

C

I AC→
β

BC, where A→
β

B

I Turing complete (Church-Turing-thesis)

I Example: (λx : 2(x + y))3→
β

2(3 + y)

I Counting beta reductions can lead to a time complexity measure
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I ¬∀x : ¬A instead of ∃x : A
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Law of excluded middle

I A∨¬A does not hold in general

I For specific A, it may be provable

I Thus, lemmas are often of the form ∀xyz... : P(x ,y ,z, ...)∨¬P(x ,y ,z, ...)

I e.g. ∀xy : (x = y)∨¬(x = y)

I Realization f (x ,y) =

{
〈0,a〉, if x = y ,

〈1,b〉, if x 6= y .
I In extracted algorithms: „subroutine“
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I ∀P : (P(0)∧∀n : P(n)⇒ P(n + 1))⇒∀n : P(n)

I An „interface“ for the realization is given by this structure

I IP〈A,λn : B〉n (A base case, B induction step)
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Hash collision as a positive formula

I ∃A : P[A(r) = 〈x ,y〉∧ x 6= y ∧h(x) = h(y)] > ε (r source of randomness)

I or: ∃A : ¬(P[A(r) = 〈x ,y〉∧ x 6= y ∧h(x) = h(y)]≤ ε)

I Apre is the algorithm extracted from the realization

I Where a collision x ,y is known, the realization can be written as 〈λ r : 〈x ,y〉,a〉 (a having
no algorithmic content)

I Where no collision is known, essentially the pigeonhole principle is realized

I Proof possible in constructive mathematics, but leads to Apre having a „long“ run time

I Or: 〈a,b〉, a being an „actual“ attack algorithm
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Pigeonhole principle, revisited

I Remember the math guy?

I Constructively, card(D) > card(R) just proved that ¬∀xy : ¬(x 6= y ∧h(x) = h(y))

I Constructively, ∃xy : x 6= y ∧h(x) = h(y) cannot be derived just from this

I This requires induction, thus leads to additional complexity
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Complexity of precomputation

I ∃A : P[A(r) = 〈x ,y〉∧ x 6= y ∧h(x) = h(y)] > ε

I requires: pigeonhole principle

I requires: ∀fxy : (∃z : z < y ∧ f (z) = x)∨¬(∃z : z < y ∧ f (z) = x)
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Summary

I Proof in constructive logic...

I ...leads to algorithm from the realization

I The algorithm can be analyzed for its costs

I We cannot disprove that the collision exists (and shouldn’t be able to)

I We can put a cost on its logical derivation
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Formalizing collision resistance

I In the algorithm extracted from the realization, precomputation can only be explicit

I Cost of the attack: TIME(Apre) + TIME(A)

I Problem: Algorithm Apre only in lambda calculus for now - other models might be easier to
examine

I Problem: possibly necessary to constructively prove theorems again that were already
classically proved

I Problem: checking costs in two tiers

I What happens to security reductions?
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Thank you for your attention.
dreiwert@irc.hackint.org
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Daniel J. Bernstein and Tanja Lange.
Non-uniform cracks in the concrete: the power of free precomputation

Ivan Dåmgard.
Collision free hash functions and public key signature schemes

Phillip Rogaway.
Formalizing Human Ignorance: Collision-Resistant Hashing without the Keys

Xiaoyun Wang and Hongbo Yu.
How to Break MD5 and Other Hash Functions
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