
IEEE 754, FPUs and Other Animals

Lucy Wayland

Cambridge MiniDebconf

November 2015



Overview

Background

Fixed Point

Floating Point

Special Cases

Exceptions

Appendix



History of IEEE 754 (1/2)

I 1960’s and early 1970’s, floating point hardware restricted to
minicomputers and mainframes

I Every manufacturer had their own, incompatible, quirky
implementation. Mid 1970s the start of the rise of the
microprocessor, and designs for floating point units for these
started

I Concerned with an explosion in individual FPUs, some
visionaries came together to produce a common standard

I IEEE p754 committee created, with most of the big industry
players taking part

I MATLAB’s creator Dr. Cleve Moler used to advise foreign
visitors not to miss the US’s two most awesome spectacles:
the Grand Canyon, and meetings of IEEE p754



History of IEEE 754 (1/2)

I 1960’s and early 1970’s, floating point hardware restricted to
minicomputers and mainframes

I Every manufacturer had their own, incompatible, quirky
implementation. Mid 1970s the start of the rise of the
microprocessor, and designs for floating point units for these
started

I Concerned with an explosion in individual FPUs, some
visionaries came together to produce a common standard

I IEEE p754 committee created, with most of the big industry
players taking part

I MATLAB’s creator Dr. Cleve Moler used to advise foreign
visitors not to miss the US’s two most awesome spectacles:
the Grand Canyon, and meetings of IEEE p754



History of IEEE 754 (1/2)

I 1960’s and early 1970’s, floating point hardware restricted to
minicomputers and mainframes

I Every manufacturer had their own, incompatible, quirky
implementation. Mid 1970s the start of the rise of the
microprocessor, and designs for floating point units for these
started

I Concerned with an explosion in individual FPUs, some
visionaries came together to produce a common standard

I IEEE p754 committee created, with most of the big industry
players taking part

I MATLAB’s creator Dr. Cleve Moler used to advise foreign
visitors not to miss the US’s two most awesome spectacles:
the Grand Canyon, and meetings of IEEE p754



History of IEEE 754 (1/2)

I 1960’s and early 1970’s, floating point hardware restricted to
minicomputers and mainframes

I Every manufacturer had their own, incompatible, quirky
implementation. Mid 1970s the start of the rise of the
microprocessor, and designs for floating point units for these
started

I Concerned with an explosion in individual FPUs, some
visionaries came together to produce a common standard

I IEEE p754 committee created, with most of the big industry
players taking part

I MATLAB’s creator Dr. Cleve Moler used to advise foreign
visitors not to miss the US’s two most awesome spectacles:
the Grand Canyon, and meetings of IEEE p754



History of IEEE 754 (1/2)

I 1960’s and early 1970’s, floating point hardware restricted to
minicomputers and mainframes

I Every manufacturer had their own, incompatible, quirky
implementation. Mid 1970s the start of the rise of the
microprocessor, and designs for floating point units for these
started

I Concerned with an explosion in individual FPUs, some
visionaries came together to produce a common standard

I IEEE p754 committee created, with most of the big industry
players taking part

I MATLAB’s creator Dr. Cleve Moler used to advise foreign
visitors not to miss the US’s two most awesome spectacles:
the Grand Canyon, and meetings of IEEE p754



History of IEEE 754 (2/2)

I Compromises, technical reports and eventually a showdown
later, IEEE p754 produced

I Not published as a standard until 1985 (IEEE 754-1985), but
by then most manufacturers had implemented it

I IEEE 754-1985 had single and double precision binary floating
point Updated to IEEE 754-2008, which added quadruple and
arbitrary precision binary floating point, 64 and 128 bit
decimal floating point, changed some terminology, and other
minor changes

I Only going to refer to IEEE 754-2008, and ignore decimal
floating point as not many FPUs support them.



History of IEEE 754 (2/2)

I Compromises, technical reports and eventually a showdown
later, IEEE p754 produced

I Not published as a standard until 1985 (IEEE 754-1985), but
by then most manufacturers had implemented it

I IEEE 754-1985 had single and double precision binary floating
point Updated to IEEE 754-2008, which added quadruple and
arbitrary precision binary floating point, 64 and 128 bit
decimal floating point, changed some terminology, and other
minor changes

I Only going to refer to IEEE 754-2008, and ignore decimal
floating point as not many FPUs support them.



History of IEEE 754 (2/2)

I Compromises, technical reports and eventually a showdown
later, IEEE p754 produced

I Not published as a standard until 1985 (IEEE 754-1985), but
by then most manufacturers had implemented it

I IEEE 754-1985 had single and double precision binary floating
point Updated to IEEE 754-2008, which added quadruple and
arbitrary precision binary floating point, 64 and 128 bit
decimal floating point, changed some terminology, and other
minor changes

I Only going to refer to IEEE 754-2008, and ignore decimal
floating point as not many FPUs support them.



History of IEEE 754 (2/2)

I Compromises, technical reports and eventually a showdown
later, IEEE p754 produced

I Not published as a standard until 1985 (IEEE 754-1985), but
by then most manufacturers had implemented it

I IEEE 754-1985 had single and double precision binary floating
point Updated to IEEE 754-2008, which added quadruple and
arbitrary precision binary floating point, 64 and 128 bit
decimal floating point, changed some terminology, and other
minor changes

I Only going to refer to IEEE 754-2008, and ignore decimal
floating point as not many FPUs support them.



Fixed Point Arithmetic (1/2)

I To understand floating point, it helps to understand fixed
point first

I Fixed point arithmetic is just like normal integer arithmetic,
but two important differences:

I An overflow to negative or positive max full house saturates,
and does not wrap

I The placement of the binary point is arbitary - just like in
decimal arithmetic

I Imagine an 4 bit fixed point number, which is a straight
integer. The binary point is to the right of the least significant
bit: 11 = 1 · 23 + 0 · 22 + 1 · 11 + 1 · 10

I Now we shift the binary point one bit to the left:
5.5 = 1 · 22 + 0 · 21 + 1 · 10 + 1 · 1−1

I The arithmetic is just the same, we just need to keep track of
where the binary point is

I Taken to its logical extreme, the binary point is completely to
the left: 0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 1−3 + 1 · 1−4



Fixed Point Arithmetic (1/2)

I To understand floating point, it helps to understand fixed
point first

I Fixed point arithmetic is just like normal integer arithmetic,
but two important differences:

I An overflow to negative or positive max full house saturates,
and does not wrap

I The placement of the binary point is arbitary - just like in
decimal arithmetic

I Imagine an 4 bit fixed point number, which is a straight
integer. The binary point is to the right of the least significant
bit: 11 = 1 · 23 + 0 · 22 + 1 · 11 + 1 · 10

I Now we shift the binary point one bit to the left:
5.5 = 1 · 22 + 0 · 21 + 1 · 10 + 1 · 1−1

I The arithmetic is just the same, we just need to keep track of
where the binary point is

I Taken to its logical extreme, the binary point is completely to
the left: 0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 1−3 + 1 · 1−4



Fixed Point Arithmetic (1/2)

I To understand floating point, it helps to understand fixed
point first

I Fixed point arithmetic is just like normal integer arithmetic,
but two important differences:

I An overflow to negative or positive max full house saturates,
and does not wrap

I The placement of the binary point is arbitary - just like in
decimal arithmetic

I Imagine an 4 bit fixed point number, which is a straight
integer. The binary point is to the right of the least significant
bit: 11 = 1 · 23 + 0 · 22 + 1 · 11 + 1 · 10

I Now we shift the binary point one bit to the left:
5.5 = 1 · 22 + 0 · 21 + 1 · 10 + 1 · 1−1

I The arithmetic is just the same, we just need to keep track of
where the binary point is

I Taken to its logical extreme, the binary point is completely to
the left: 0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 1−3 + 1 · 1−4



Fixed Point Arithmetic (1/2)

I To understand floating point, it helps to understand fixed
point first

I Fixed point arithmetic is just like normal integer arithmetic,
but two important differences:

I An overflow to negative or positive max full house saturates,
and does not wrap

I The placement of the binary point is arbitary - just like in
decimal arithmetic

I Imagine an 4 bit fixed point number, which is a straight
integer. The binary point is to the right of the least significant
bit: 11 = 1 · 23 + 0 · 22 + 1 · 11 + 1 · 10

I Now we shift the binary point one bit to the left:
5.5 = 1 · 22 + 0 · 21 + 1 · 10 + 1 · 1−1

I The arithmetic is just the same, we just need to keep track of
where the binary point is

I Taken to its logical extreme, the binary point is completely to
the left: 0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 1−3 + 1 · 1−4



Fixed Point Arithmetic (1/2)

I To understand floating point, it helps to understand fixed
point first

I Fixed point arithmetic is just like normal integer arithmetic,
but two important differences:

I An overflow to negative or positive max full house saturates,
and does not wrap

I The placement of the binary point is arbitary - just like in
decimal arithmetic

I Imagine an 4 bit fixed point number, which is a straight
integer. The binary point is to the right of the least significant
bit: 11 = 1 · 23 + 0 · 22 + 1 · 11 + 1 · 10

I Now we shift the binary point one bit to the left:
5.5 = 1 · 22 + 0 · 21 + 1 · 10 + 1 · 1−1

I The arithmetic is just the same, we just need to keep track of
where the binary point is

I Taken to its logical extreme, the binary point is completely to
the left: 0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 1−3 + 1 · 1−4



Fixed Point Arithmetic (1/2)

I To understand floating point, it helps to understand fixed
point first

I Fixed point arithmetic is just like normal integer arithmetic,
but two important differences:

I An overflow to negative or positive max full house saturates,
and does not wrap

I The placement of the binary point is arbitary - just like in
decimal arithmetic

I Imagine an 4 bit fixed point number, which is a straight
integer. The binary point is to the right of the least significant
bit: 11 = 1 · 23 + 0 · 22 + 1 · 11 + 1 · 10

I Now we shift the binary point one bit to the left:
5.5 = 1 · 22 + 0 · 21 + 1 · 10 + 1 · 1−1

I The arithmetic is just the same, we just need to keep track of
where the binary point is

I Taken to its logical extreme, the binary point is completely to
the left: 0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 1−3 + 1 · 1−4



Fixed Point Arithmetic (1/2)

I To understand floating point, it helps to understand fixed
point first

I Fixed point arithmetic is just like normal integer arithmetic,
but two important differences:

I An overflow to negative or positive max full house saturates,
and does not wrap

I The placement of the binary point is arbitary - just like in
decimal arithmetic

I Imagine an 4 bit fixed point number, which is a straight
integer. The binary point is to the right of the least significant
bit: 11 = 1 · 23 + 0 · 22 + 1 · 11 + 1 · 10

I Now we shift the binary point one bit to the left:
5.5 = 1 · 22 + 0 · 21 + 1 · 10 + 1 · 1−1

I The arithmetic is just the same, we just need to keep track of
where the binary point is

I Taken to its logical extreme, the binary point is completely to
the left: 0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 1−3 + 1 · 1−4



Fixed Point Arithmetic (1/2)

I To understand floating point, it helps to understand fixed
point first

I Fixed point arithmetic is just like normal integer arithmetic,
but two important differences:

I An overflow to negative or positive max full house saturates,
and does not wrap

I The placement of the binary point is arbitary - just like in
decimal arithmetic

I Imagine an 4 bit fixed point number, which is a straight
integer. The binary point is to the right of the least significant
bit: 11 = 1 · 23 + 0 · 22 + 1 · 11 + 1 · 10

I Now we shift the binary point one bit to the left:
5.5 = 1 · 22 + 0 · 21 + 1 · 10 + 1 · 1−1

I The arithmetic is just the same, we just need to keep track of
where the binary point is

I Taken to its logical extreme, the binary point is completely to
the left: 0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 1−3 + 1 · 1−4



Fixed Point Arithmetic (2/2)

I Normally fixed point numbers are signed, and use standard 2’s
complement.

I These are normally termed ”Q Numbers” (due to the
saturation).

I The notation is Qx.y, where ”x” is the number of bits (not
including the sign bit) to the left of the binary point, and ”y”
is the number of bits to the right.

I Convention is that when x=0, it is omitted. E.g. Q15 for a
signed 16 bit number, Q31 for 32 etc.

I Note that this Q15, Q31 etc. can represent -1.0, but cannot
represent +1.0



Fixed Point Arithmetic (2/2)

I Normally fixed point numbers are signed, and use standard 2’s
complement.

I These are normally termed ”Q Numbers” (due to the
saturation).

I The notation is Qx.y, where ”x” is the number of bits (not
including the sign bit) to the left of the binary point, and ”y”
is the number of bits to the right.

I Convention is that when x=0, it is omitted. E.g. Q15 for a
signed 16 bit number, Q31 for 32 etc.

I Note that this Q15, Q31 etc. can represent -1.0, but cannot
represent +1.0



Fixed Point Arithmetic (2/2)

I Normally fixed point numbers are signed, and use standard 2’s
complement.

I These are normally termed ”Q Numbers” (due to the
saturation).

I The notation is Qx.y, where ”x” is the number of bits (not
including the sign bit) to the left of the binary point, and ”y”
is the number of bits to the right.

I Convention is that when x=0, it is omitted. E.g. Q15 for a
signed 16 bit number, Q31 for 32 etc.

I Note that this Q15, Q31 etc. can represent -1.0, but cannot
represent +1.0



Fixed Point Arithmetic (2/2)

I Normally fixed point numbers are signed, and use standard 2’s
complement.

I These are normally termed ”Q Numbers” (due to the
saturation).

I The notation is Qx.y, where ”x” is the number of bits (not
including the sign bit) to the left of the binary point, and ”y”
is the number of bits to the right.

I Convention is that when x=0, it is omitted. E.g. Q15 for a
signed 16 bit number, Q31 for 32 etc.

I Note that this Q15, Q31 etc. can represent -1.0, but cannot
represent +1.0



Fixed Point Arithmetic (2/2)

I Normally fixed point numbers are signed, and use standard 2’s
complement.

I These are normally termed ”Q Numbers” (due to the
saturation).

I The notation is Qx.y, where ”x” is the number of bits (not
including the sign bit) to the left of the binary point, and ”y”
is the number of bits to the right.

I Convention is that when x=0, it is omitted. E.g. Q15 for a
signed 16 bit number, Q31 for 32 etc.

I Note that this Q15, Q31 etc. can represent -1.0, but cannot
represent +1.0



Floating Point Representation (1/2)

I Floating point numbers are made up of one assumption, and
three parts:

I Base - you are assumed you are working in base, usually binary,
but sometimes decimal.

I Sign (+ or -)
I Mantissa, also known as the significand (e.g. 3.1415)
I The exponent, which is the shift of the decimal or binary

point, e.g. 10−3

I The mantissa is made up of multiples of decreasing powers of
the base, as you work from most signifcant to less significant.
For example: 3.1415 = 3 · 100 + 1 · 10−1

I Each multiplier is 0 .. (base - 1)

I The exponent is just the base taken to a power



Floating Point Representation (1/2)

I Floating point numbers are made up of one assumption, and
three parts:

I Base - you are assumed you are working in base, usually binary,
but sometimes decimal.

I Sign (+ or -)
I Mantissa, also known as the significand (e.g. 3.1415)
I The exponent, which is the shift of the decimal or binary

point, e.g. 10−3

I The mantissa is made up of multiples of decreasing powers of
the base, as you work from most signifcant to less significant.
For example: 3.1415 = 3 · 100 + 1 · 10−1

I Each multiplier is 0 .. (base - 1)

I The exponent is just the base taken to a power



Floating Point Representation (1/2)

I Floating point numbers are made up of one assumption, and
three parts:

I Base - you are assumed you are working in base, usually binary,
but sometimes decimal.

I Sign (+ or -)

I Mantissa, also known as the significand (e.g. 3.1415)
I The exponent, which is the shift of the decimal or binary

point, e.g. 10−3

I The mantissa is made up of multiples of decreasing powers of
the base, as you work from most signifcant to less significant.
For example: 3.1415 = 3 · 100 + 1 · 10−1

I Each multiplier is 0 .. (base - 1)

I The exponent is just the base taken to a power



Floating Point Representation (1/2)

I Floating point numbers are made up of one assumption, and
three parts:

I Base - you are assumed you are working in base, usually binary,
but sometimes decimal.

I Sign (+ or -)
I Mantissa, also known as the significand (e.g. 3.1415)

I The exponent, which is the shift of the decimal or binary
point, e.g. 10−3

I The mantissa is made up of multiples of decreasing powers of
the base, as you work from most signifcant to less significant.
For example: 3.1415 = 3 · 100 + 1 · 10−1

I Each multiplier is 0 .. (base - 1)

I The exponent is just the base taken to a power



Floating Point Representation (1/2)

I Floating point numbers are made up of one assumption, and
three parts:

I Base - you are assumed you are working in base, usually binary,
but sometimes decimal.

I Sign (+ or -)
I Mantissa, also known as the significand (e.g. 3.1415)
I The exponent, which is the shift of the decimal or binary

point, e.g. 10−3

I The mantissa is made up of multiples of decreasing powers of
the base, as you work from most signifcant to less significant.
For example: 3.1415 = 3 · 100 + 1 · 10−1

I Each multiplier is 0 .. (base - 1)

I The exponent is just the base taken to a power



Floating Point Representation (1/2)

I Floating point numbers are made up of one assumption, and
three parts:

I Base - you are assumed you are working in base, usually binary,
but sometimes decimal.

I Sign (+ or -)
I Mantissa, also known as the significand (e.g. 3.1415)
I The exponent, which is the shift of the decimal or binary

point, e.g. 10−3

I The mantissa is made up of multiples of decreasing powers of
the base, as you work from most signifcant to less significant.
For example: 3.1415 = 3 · 100 + 1 · 10−1

I Each multiplier is 0 .. (base - 1)

I The exponent is just the base taken to a power



Floating Point Representation (1/2)

I Floating point numbers are made up of one assumption, and
three parts:

I Base - you are assumed you are working in base, usually binary,
but sometimes decimal.

I Sign (+ or -)
I Mantissa, also known as the significand (e.g. 3.1415)
I The exponent, which is the shift of the decimal or binary

point, e.g. 10−3

I The mantissa is made up of multiples of decreasing powers of
the base, as you work from most signifcant to less significant.
For example: 3.1415 = 3 · 100 + 1 · 10−1

I Each multiplier is 0 .. (base - 1)

I The exponent is just the base taken to a power



Floating Point Representation (1/2)

I Floating point numbers are made up of one assumption, and
three parts:

I Base - you are assumed you are working in base, usually binary,
but sometimes decimal.

I Sign (+ or -)
I Mantissa, also known as the significand (e.g. 3.1415)
I The exponent, which is the shift of the decimal or binary

point, e.g. 10−3

I The mantissa is made up of multiples of decreasing powers of
the base, as you work from most signifcant to less significant.
For example: 3.1415 = 3 · 100 + 1 · 10−1

I Each multiplier is 0 .. (base - 1)

I The exponent is just the base taken to a power



Floating Point Representation (2/2)

I Binary floating point is just just all of this in base 2 (rather
like fixed point).

I Sign as before (not two’s compliment).

I Mantissa is sum of 1 or 0 times decreasing negative powers of
two, starting with 20 e.g.: 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3

I Exponent is power of 2 to multiply by.

I So the sign is a bit, the exponent is a signed number to take
the multiplier of 2 by, and each bit in the mantissa is the
amount of that decreasing power of two.



Floating Point Representation (2/2)

I Binary floating point is just just all of this in base 2 (rather
like fixed point).

I Sign as before (not two’s compliment).

I Mantissa is sum of 1 or 0 times decreasing negative powers of
two, starting with 20 e.g.: 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3

I Exponent is power of 2 to multiply by.

I So the sign is a bit, the exponent is a signed number to take
the multiplier of 2 by, and each bit in the mantissa is the
amount of that decreasing power of two.



Floating Point Representation (2/2)

I Binary floating point is just just all of this in base 2 (rather
like fixed point).

I Sign as before (not two’s compliment).

I Mantissa is sum of 1 or 0 times decreasing negative powers of
two, starting with 20 e.g.: 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3

I Exponent is power of 2 to multiply by.

I So the sign is a bit, the exponent is a signed number to take
the multiplier of 2 by, and each bit in the mantissa is the
amount of that decreasing power of two.



Floating Point Representation (2/2)

I Binary floating point is just just all of this in base 2 (rather
like fixed point).

I Sign as before (not two’s compliment).

I Mantissa is sum of 1 or 0 times decreasing negative powers of
two, starting with 20 e.g.: 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3

I Exponent is power of 2 to multiply by.

I So the sign is a bit, the exponent is a signed number to take
the multiplier of 2 by, and each bit in the mantissa is the
amount of that decreasing power of two.



Floating Point Representation (2/2)

I Binary floating point is just just all of this in base 2 (rather
like fixed point).

I Sign as before (not two’s compliment).

I Mantissa is sum of 1 or 0 times decreasing negative powers of
two, starting with 20 e.g.: 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3

I Exponent is power of 2 to multiply by.

I So the sign is a bit, the exponent is a signed number to take
the multiplier of 2 by, and each bit in the mantissa is the
amount of that decreasing power of two.



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:

I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias
I Make the exponent values of all 0s and all 1s special cases

(more on these in a bit)
I Think very hard on the balance of precision vs. range for a

certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.

I Make exponent normalised, so it is unsigned, minus an offset
called the exponent bias

I Make the exponent values of all 0s and all 1s special cases
(more on these in a bit)

I Think very hard on the balance of precision vs. range for a
certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias

I Make the exponent values of all 0s and all 1s special cases
(more on these in a bit)

I Think very hard on the balance of precision vs. range for a
certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias
I Make the exponent values of all 0s and all 1s special cases

(more on these in a bit)

I Think very hard on the balance of precision vs. range for a
certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias
I Make the exponent values of all 0s and all 1s special cases

(more on these in a bit)
I Think very hard on the balance of precision vs. range for a

certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias
I Make the exponent values of all 0s and all 1s special cases

(more on these in a bit)
I Think very hard on the balance of precision vs. range for a

certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:

I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias
I Make the exponent values of all 0s and all 1s special cases

(more on these in a bit)
I Think very hard on the balance of precision vs. range for a

certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)

I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias
I Make the exponent values of all 0s and all 1s special cases

(more on these in a bit)
I Think very hard on the balance of precision vs. range for a

certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware

I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias
I Make the exponent values of all 0s and all 1s special cases

(more on these in a bit)
I Think very hard on the balance of precision vs. range for a

certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)

I Exact 1, but no zero!



IEEE 754 Representation (1/2)

I IEEE 754 cleverness:
I Throw away leading 20 term and assume it is always set.
I Make exponent normalised, so it is unsigned, minus an offset

called the exponent bias
I Make the exponent values of all 0s and all 1s special cases

(more on these in a bit)
I Think very hard on the balance of precision vs. range for a

certain bit length (32, 64 etc.), and come up with a defined
length of mantissa and exponent for each

I This gives us:
I Symmetric range (no more negative than positive numbers)
I A standard format that works on any compliant hardware
I Fast mathematics (normal arithmetic works on each field)
I Exact 1, but no zero!



IEEE 754 Representation (2/2)

I All IEEE 754 floating point numbers are of the form:

I Where N is the width of the format (e.g. 32)
I IEEE 754 defines three binary formats:

I binary32 (single), N=32, E=8, M=23, bias=127
I binary64 (double) , N=64, E=11, M=52, bias=1023
I binary128, N=128, E=15, M=112, bias=16383

I Additionally, under the arbitrary precision, there is often:
I binary16 (half), N=16, E=5, M=10, bias=15



IEEE 754 Representation (2/2)

I All IEEE 754 floating point numbers are of the form:

I Where N is the width of the format (e.g. 32)
I IEEE 754 defines three binary formats:

I binary32 (single), N=32, E=8, M=23, bias=127
I binary64 (double) , N=64, E=11, M=52, bias=1023
I binary128, N=128, E=15, M=112, bias=16383

I Additionally, under the arbitrary precision, there is often:
I binary16 (half), N=16, E=5, M=10, bias=15



IEEE 754 Example

I Half precision example 0x3555 = b0011 0101 0101 0101

I Sign = b0
I Which means it is positive

I Exponent = b01101
I = 13 normalized with bias of 15 = -2
I = 2−2 = 0.25

I Mantissa = b0101010101
I = 2−2 + 2−4 + 2−6 + 2−8 + 2−10

I = 0.25 + 0.0625 + 0.015625 + 0.00390625 + 0.0009765625
I = 0.3330078125
I With the implicit 20 = 1.3330078125

I Final answer = +1x0.25x1.3330078215 = 0.3332519553725

I Which is about as close to a 1/3 as it can get



IEEE 754 Example

I Half precision example 0x3555 = b0011 0101 0101 0101
I Sign = b0

I Which means it is positive

I Exponent = b01101
I = 13 normalized with bias of 15 = -2
I = 2−2 = 0.25

I Mantissa = b0101010101
I = 2−2 + 2−4 + 2−6 + 2−8 + 2−10

I = 0.25 + 0.0625 + 0.015625 + 0.00390625 + 0.0009765625
I = 0.3330078125
I With the implicit 20 = 1.3330078125

I Final answer = +1x0.25x1.3330078215 = 0.3332519553725

I Which is about as close to a 1/3 as it can get



IEEE 754 Example

I Half precision example 0x3555 = b0011 0101 0101 0101
I Sign = b0

I Which means it is positive

I Exponent = b01101
I = 13 normalized with bias of 15 = -2
I = 2−2 = 0.25

I Mantissa = b0101010101
I = 2−2 + 2−4 + 2−6 + 2−8 + 2−10

I = 0.25 + 0.0625 + 0.015625 + 0.00390625 + 0.0009765625
I = 0.3330078125
I With the implicit 20 = 1.3330078125

I Final answer = +1x0.25x1.3330078215 = 0.3332519553725

I Which is about as close to a 1/3 as it can get



IEEE 754 Example

I Half precision example 0x3555 = b0011 0101 0101 0101
I Sign = b0

I Which means it is positive

I Exponent = b01101
I = 13 normalized with bias of 15 = -2
I = 2−2 = 0.25

I Mantissa = b0101010101
I = 2−2 + 2−4 + 2−6 + 2−8 + 2−10

I = 0.25 + 0.0625 + 0.015625 + 0.00390625 + 0.0009765625
I = 0.3330078125
I With the implicit 20 = 1.3330078125

I Final answer = +1x0.25x1.3330078215 = 0.3332519553725

I Which is about as close to a 1/3 as it can get



IEEE 754 Example

I Half precision example 0x3555 = b0011 0101 0101 0101
I Sign = b0

I Which means it is positive

I Exponent = b01101
I = 13 normalized with bias of 15 = -2
I = 2−2 = 0.25

I Mantissa = b0101010101
I = 2−2 + 2−4 + 2−6 + 2−8 + 2−10

I = 0.25 + 0.0625 + 0.015625 + 0.00390625 + 0.0009765625
I = 0.3330078125
I With the implicit 20 = 1.3330078125

I Final answer = +1x0.25x1.3330078215 = 0.3332519553725

I Which is about as close to a 1/3 as it can get



Special Cases (1/2)

I Exponent is all 0s:
I If the mantissa is also all 0s, then the number is 0

I This gives us signed zeros (+0 and -0). Very important
mathematically,

I IEEE 754-2008 declares that (+0 == −0) as true, not
(+0 > −0)

I If the mantissa is non-zero, then the number is ”subnormal”.
Old IEEE 754-1985 terminology was ”denormalized”, and you
may see this in documentation

I In this case, the always assumed 1 is actually 0, and the
normalized exponent is maximum negative of the precision

I How an FPU handles subnormal numbers is determined by
version of the FPU, state of the control registers, and in some
cases IMPLEMENTATION DEFINED. Thankfully, not the
phase of the moon



Special Cases (1/2)

I Exponent is all 0s:
I If the mantissa is also all 0s, then the number is 0
I This gives us signed zeros (+0 and -0). Very important

mathematically,

I IEEE 754-2008 declares that (+0 == −0) as true, not
(+0 > −0)

I If the mantissa is non-zero, then the number is ”subnormal”.
Old IEEE 754-1985 terminology was ”denormalized”, and you
may see this in documentation

I In this case, the always assumed 1 is actually 0, and the
normalized exponent is maximum negative of the precision

I How an FPU handles subnormal numbers is determined by
version of the FPU, state of the control registers, and in some
cases IMPLEMENTATION DEFINED. Thankfully, not the
phase of the moon



Special Cases (1/2)

I Exponent is all 0s:
I If the mantissa is also all 0s, then the number is 0
I This gives us signed zeros (+0 and -0). Very important

mathematically,
I IEEE 754-2008 declares that (+0 == −0) as true, not

(+0 > −0)

I If the mantissa is non-zero, then the number is ”subnormal”.
Old IEEE 754-1985 terminology was ”denormalized”, and you
may see this in documentation

I In this case, the always assumed 1 is actually 0, and the
normalized exponent is maximum negative of the precision

I How an FPU handles subnormal numbers is determined by
version of the FPU, state of the control registers, and in some
cases IMPLEMENTATION DEFINED. Thankfully, not the
phase of the moon



Special Cases (1/2)

I Exponent is all 0s:
I If the mantissa is also all 0s, then the number is 0
I This gives us signed zeros (+0 and -0). Very important

mathematically,
I IEEE 754-2008 declares that (+0 == −0) as true, not

(+0 > −0)

I If the mantissa is non-zero, then the number is ”subnormal”.
Old IEEE 754-1985 terminology was ”denormalized”, and you
may see this in documentation

I In this case, the always assumed 1 is actually 0, and the
normalized exponent is maximum negative of the precision

I How an FPU handles subnormal numbers is determined by
version of the FPU, state of the control registers, and in some
cases IMPLEMENTATION DEFINED. Thankfully, not the
phase of the moon



Special Cases (1/2)

I Exponent is all 0s:
I If the mantissa is also all 0s, then the number is 0
I This gives us signed zeros (+0 and -0). Very important

mathematically,
I IEEE 754-2008 declares that (+0 == −0) as true, not

(+0 > −0)

I If the mantissa is non-zero, then the number is ”subnormal”.
Old IEEE 754-1985 terminology was ”denormalized”, and you
may see this in documentation

I In this case, the always assumed 1 is actually 0, and the
normalized exponent is maximum negative of the precision

I How an FPU handles subnormal numbers is determined by
version of the FPU, state of the control registers, and in some
cases IMPLEMENTATION DEFINED. Thankfully, not the
phase of the moon



Special Cases (2/2)

I Exponent all 1s:

I If the mantissa is zero, then value is infinity
I This provides +∞ and −∞

I If the mantissa is non-zero, then it is Not a Number (NaN)
I If the top bit of the mantissa is set (the 2−1 value), it is a

Quiet NaN (qNaN)
I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of

the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)
I By default, all standard IEEE 754 floating point operations

which produce NaNs only produce Quiet NaNs



Special Cases (2/2)

I Exponent all 1s:
I If the mantissa is zero, then value is infinity

I This provides +∞ and −∞
I If the mantissa is non-zero, then it is Not a Number (NaN)

I If the top bit of the mantissa is set (the 2−1 value), it is a
Quiet NaN (qNaN)

I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of
the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)
I By default, all standard IEEE 754 floating point operations

which produce NaNs only produce Quiet NaNs



Special Cases (2/2)

I Exponent all 1s:
I If the mantissa is zero, then value is infinity
I This provides +∞ and −∞

I If the mantissa is non-zero, then it is Not a Number (NaN)
I If the top bit of the mantissa is set (the 2−1 value), it is a

Quiet NaN (qNaN)
I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of

the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)
I By default, all standard IEEE 754 floating point operations

which produce NaNs only produce Quiet NaNs



Special Cases (2/2)

I Exponent all 1s:
I If the mantissa is zero, then value is infinity
I This provides +∞ and −∞

I If the mantissa is non-zero, then it is Not a Number (NaN)

I If the top bit of the mantissa is set (the 2−1 value), it is a
Quiet NaN (qNaN)

I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of
the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)
I By default, all standard IEEE 754 floating point operations

which produce NaNs only produce Quiet NaNs



Special Cases (2/2)

I Exponent all 1s:
I If the mantissa is zero, then value is infinity
I This provides +∞ and −∞

I If the mantissa is non-zero, then it is Not a Number (NaN)
I If the top bit of the mantissa is set (the 2−1 value), it is a

Quiet NaN (qNaN)

I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of
the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)
I By default, all standard IEEE 754 floating point operations

which produce NaNs only produce Quiet NaNs



Special Cases (2/2)

I Exponent all 1s:
I If the mantissa is zero, then value is infinity
I This provides +∞ and −∞

I If the mantissa is non-zero, then it is Not a Number (NaN)
I If the top bit of the mantissa is set (the 2−1 value), it is a

Quiet NaN (qNaN)
I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of

the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)
I By default, all standard IEEE 754 floating point operations

which produce NaNs only produce Quiet NaNs



Special Cases (2/2)

I Exponent all 1s:
I If the mantissa is zero, then value is infinity
I This provides +∞ and −∞

I If the mantissa is non-zero, then it is Not a Number (NaN)
I If the top bit of the mantissa is set (the 2−1 value), it is a

Quiet NaN (qNaN)
I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of

the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)
I By default, all standard IEEE 754 floating point operations

which produce NaNs only produce Quiet NaNs



Special Cases (2/2)

I Exponent all 1s:
I If the mantissa is zero, then value is infinity
I This provides +∞ and −∞

I If the mantissa is non-zero, then it is Not a Number (NaN)
I If the top bit of the mantissa is set (the 2−1 value), it is a

Quiet NaN (qNaN)
I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of

the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)

I By default, all standard IEEE 754 floating point operations
which produce NaNs only produce Quiet NaNs



Special Cases (2/2)

I Exponent all 1s:
I If the mantissa is zero, then value is infinity
I This provides +∞ and −∞

I If the mantissa is non-zero, then it is Not a Number (NaN)
I If the top bit of the mantissa is set (the 2−1 value), it is a

Quiet NaN (qNaN)
I If the top bit is clear, it is a Signaling NaN (sNaN). The rest of

the bits can be any value EXCEPT all 0s as then it would be
an infinity

I The rest of this field can encode information about the NaN
and what caused it

I NaNs are not signed (sign bit ignored)
I By default, all standard IEEE 754 floating point operations

which produce NaNs only produce Quiet NaNs



Rounding

I The output of an operation will almost certainly not be
precisely represented by a format. Therefore, rounding is
required IEEE 754 defines 4 rounding modes for binary
floating point:

I Round up, towards +infinity
I Round down, towards -infinity
I Round towards zero (truncation).
I Round to nearest, ties to even - calculate the ideal value, and

then on a tie, round to the nearest even digit

I Rounds to nearest, ties to even is the default but most
computationally expensive mode

I There is a fifth optional mode, commonly used in decimal, but
not in binary floating point - round to nearest, ties away from
zero



Rounding

I The output of an operation will almost certainly not be
precisely represented by a format. Therefore, rounding is
required IEEE 754 defines 4 rounding modes for binary
floating point:

I Round up, towards +infinity
I Round down, towards -infinity
I Round towards zero (truncation).
I Round to nearest, ties to even - calculate the ideal value, and

then on a tie, round to the nearest even digit

I Rounds to nearest, ties to even is the default but most
computationally expensive mode

I There is a fifth optional mode, commonly used in decimal, but
not in binary floating point - round to nearest, ties away from
zero



Rounding

I The output of an operation will almost certainly not be
precisely represented by a format. Therefore, rounding is
required IEEE 754 defines 4 rounding modes for binary
floating point:

I Round up, towards +infinity
I Round down, towards -infinity
I Round towards zero (truncation).
I Round to nearest, ties to even - calculate the ideal value, and

then on a tie, round to the nearest even digit

I Rounds to nearest, ties to even is the default but most
computationally expensive mode

I There is a fifth optional mode, commonly used in decimal, but
not in binary floating point - round to nearest, ties away from
zero



Rounding

I The output of an operation will almost certainly not be
precisely represented by a format. Therefore, rounding is
required IEEE 754 defines 4 rounding modes for binary
floating point:

I Round up, towards +infinity
I Round down, towards -infinity
I Round towards zero (truncation).
I Round to nearest, ties to even - calculate the ideal value, and

then on a tie, round to the nearest even digit

I Rounds to nearest, ties to even is the default but most
computationally expensive mode

I There is a fifth optional mode, commonly used in decimal, but
not in binary floating point - round to nearest, ties away from
zero



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number
I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number
I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:

I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number
I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN

I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number
I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity

I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number
I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity

I Square root of a negative number
I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number

I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number
I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number
I Some other edge cases

I Division by zero

I The output of the operation is the correctly signed infinity



Exceptions (1/2)

I IEEE 754 defines five exceptions

I A floating point exception does not necessarily mean a
processor exception

I Invalid operation:
I Performing an operation on a Signalling NaN
I Adding or subtracting when both operands are an infinity
I Dividing 0 by 0, or an infinity by an infinity
I Square root of a negative number
I Some other edge cases

I Division by zero
I The output of the operation is the correctly signed infinity



Exceptions (2/2)

I Underflow
I The output of the operation is non-zero, but smaller than the

format can represent. This is called tinniness
I Output is rounded, which can become zero or subnormal

I Overflow
I Output would be finite but bigger than the format can hold
I Depending on rounding, output can either be biggest finite

number of the format, or an infinity

I Inexact
I The output of the operation means that neither the desired

mantissa nor desired exponent can be represented by the
format

I Nearly always paired with an Underflow or Overflow



Exceptions (2/2)

I Underflow
I The output of the operation is non-zero, but smaller than the

format can represent. This is called tinniness
I Output is rounded, which can become zero or subnormal

I Overflow
I Output would be finite but bigger than the format can hold
I Depending on rounding, output can either be biggest finite

number of the format, or an infinity

I Inexact
I The output of the operation means that neither the desired

mantissa nor desired exponent can be represented by the
format

I Nearly always paired with an Underflow or Overflow



Exceptions (2/2)

I Underflow
I The output of the operation is non-zero, but smaller than the

format can represent. This is called tinniness
I Output is rounded, which can become zero or subnormal

I Overflow
I Output would be finite but bigger than the format can hold
I Depending on rounding, output can either be biggest finite

number of the format, or an infinity

I Inexact
I The output of the operation means that neither the desired

mantissa nor desired exponent can be represented by the
format

I Nearly always paired with an Underflow or Overflow



NaNs

I The NaN mantissa encodes information about the NaN

I Any operation that produces an Invalid Operation exception,
generates a qNaN

I Any operation that has a qNaN but not an sNaN as an input,
shall pass on the input qNaN as the output

I Any operation that has a sNan as an input shall signal an
Invalid Operation exception



NaNs

I The NaN mantissa encodes information about the NaN

I Any operation that produces an Invalid Operation exception,
generates a qNaN

I Any operation that has a qNaN but not an sNaN as an input,
shall pass on the input qNaN as the output

I Any operation that has a sNan as an input shall signal an
Invalid Operation exception



NaNs

I The NaN mantissa encodes information about the NaN

I Any operation that produces an Invalid Operation exception,
generates a qNaN

I Any operation that has a qNaN but not an sNaN as an input,
shall pass on the input qNaN as the output

I Any operation that has a sNan as an input shall signal an
Invalid Operation exception



NaNs

I The NaN mantissa encodes information about the NaN

I Any operation that produces an Invalid Operation exception,
generates a qNaN

I Any operation that has a qNaN but not an sNaN as an input,
shall pass on the input qNaN as the output

I Any operation that has a sNan as an input shall signal an
Invalid Operation exception



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)
I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions
I Exponential and log functions
I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons

I Standard arithmetic operations (+ - / *, power, square root
and N root)

I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions
I Exponential and log functions
I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)

I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions
I Exponential and log functions
I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)
I Fused multiply accumulate (A = A + B x C)

I Integer ⇔ floating point conversions
I Exponential and log functions
I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)
I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions

I Exponential and log functions
I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)
I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions
I Exponential and log functions

I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)
I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions
I Exponential and log functions
I Trigonometric and hyperbolic functions

I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)
I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions
I Exponential and log functions
I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)
I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions
I Exponential and log functions
I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Operations

I The standard defines several operations, and how they should
perform:

I (In)equality comparisons
I Standard arithmetic operations (+ - / *, power, square root

and N root)
I Fused multiply accumulate (A = A + B x C)
I Integer ⇔ floating point conversions
I Exponential and log functions
I Trigonometric and hyperbolic functions
I Various support, status and identity functions e.g. isInfinite()

I Note that these do not have to be implemented in hardware

I atan2 is notorious for its edge conditions, and is classic
example of where signed zero is required



Appendix


	Background
	Fixed Point
	Floating Point
	Special Cases
	Exceptions
	Appendix

