
LUKS1 vs. LUKS2
or how do I encrypt my whole disk…

Cyril Brulebois <cyril@debamax.com>
9 June 2019

Mini-DebConf Hamburg



Introduction to LUKS

LUKS = Linux Unified Key Setup

Provides disk encryption

Works on a block device, rather than on a file system

Makes full disk encryption possible

1/30



Full disk encryption seems possible

2/30



Really full?

(in)famous separate /boot

3/30



Cryptodisk to the rescue!

GRUB’s cryptodisk feature:
▶ GRUB asks for a passphrase
▶ then unlocks the device on its own
▶ then looks for config, kernel, initramfs, etc.

Supported backends:
▶ GELI (FreeBSD): since 2011
▶ LUKS (Linux): since 2014

Unfortunately: no support in the Debian Installer

4/30



Hackish solutions

User-submitted, untested instructions to convince Debian Installer not to perform its usual
checks → https://lists.debian.org/debian-boot/2019/01/msg00035.html

Otherwise, possible workaround:
▶ follow guided partitioning (use entire disk and set up encrypted LVM)
▶ move /boot to the root filesystem
▶ enable cryptodisk support in GRUB
▶ (pretend the wasted partition/space are not an issue)

5/30

https://lists.debian.org/debian-boot/2019/01/msg00035.html


Hackish solution: instructions for Stretch

Copy-move /boot into the root FS:
cp -r /boot /boot.copy
umount /boot
rmdir /boot
mv /boot.copy /boot

Comment out the UUID= line for /boot in /etc/fstab

Enable cryptodisk support in GRUB and re-install it on target device:
echo 'GRUB_ENABLE_CRYPTODISK=y' >> /etc/default/grub
update-grub
grub-install /dev/sda

6/30



Hackish solution: instructions for Stretch, consequences

Some differences in /boot/grub/grub.cfg:
insmod part_msdos

+insmod cryptodisk
+insmod luks
+insmod gcry_rijndael
+insmod gcry_rijndael
+insmod gcry_sha256
+insmod lvm
insmod ext2

-set root='hd0,msdos1'
+cryptomount -u 2072b09dcb25447386121d0103ad7db5
+set root='lvmid/dwLFt5-njhz-t2iF-kfEH-5Fwv-df3U-OdZDYR/gKjDoO-2itn-YbMk-nrT1-dkI9-faQv-kGPaaf'

-linux /vmlinuz-4.9.0-9-amd64 root=/dev/mapper/autotest--vg-root ro quiet
+linux /boot/vmlinuz-4.9.0-9-amd64 root=/dev/mapper/autotest--vg-root ro quiet
echo 'Chargement du disque mémoire initial…'

-initrd /initrd.img-4.9.0-9-amd64
+initrd /boot/initrd.img-4.9.0-9-amd64 7/30



Hackish solution: boot process with Stretch (1/4)

8/30



Hackish solution: boot process with Stretch (2/4)

9/30



Hackish solution: boot process with Stretch (3/4)

10/30



Hackish solution: boot process with Stretch (4/4)

11/30



All good then?

Reportedly working since Wheezy…

All good then?

Let’s adapt Debian Installer finally?

Not so quick…

12/30



Hackish solution: boot process with Buster

13/30



Hackish solution: configuration changes with Buster

Let’s check /boot/grub/grub.cfg differences in Buster:
-insmod part_msdos
+insmod lvm

-set root='hd0,msdos1'
+set root='lvmid/2lwb8R-pGQ6-zkqq-1us5-mwg1-2sce-jcoyMU/yRZykf-CI42-IAEG-U9i3-VasH-fThS-6mQcSj'

-linux /vmlinuz-4.19.0-5-amd64 root=/dev/mapper/autotest--vg-root ro quiet
+linux /boot/vmlinuz-4.19.0-5-amd64 root=/dev/mapper/autotest--vg-root ro quiet

-initrd /initrd.img-4.19.0-5-amd64
+initrd /boot/initrd.img-4.19.0-5-amd64

14/30



Regression in Buster

Problem:
▶ Recent change: cryptsetup defaults to LUKS2
▶ New, different on-disk format
▶ Not supported by GRUB2, yet

But maybe it’s possible to add support for LUKS2?
→ https://savannah.gnu.org/bugs/?55093

15/30

https://savannah.gnu.org/bugs/?55093


LUKS implementation in GRUB

Seems rather small (hundreds of lines)

Entry points in grub-core/disk/luks.c (used by grub-core/disk/cryptodisk.c):
struct grub_cryptodisk_dev luks_crypto = {

.scan = configure_ciphers,

.recover_key = luks_recover_key
};

Everything happens with:
▶ grub_luks_phdr structure
▶ configure_ciphers(): parse LUKS headers, then configure ciphers
▶ luks_recover_key(): ask for passphrase, recover key

16/30



LUKS1’s on-disk format (1/3): data for configure_ciphers()

17/30



LUKS1’s on-disk format (2/3): data for configure_ciphers()

18/30



LUKS1’s on-disk format (3/3): data for luks_recover_key()

PBKDF2 = Password-Based Key Derivation Function 2

19/30



LUKS2’s on-disk format (1/2)

20/30



LUKS2’s on-disk format (2/2)

21/30



LUKS2’s on-disk format, JSON (1/4)

"tokens": {},
"segments": {

"0": {
"type": "crypt",
"offset": "16777216",
"iv_tweak": "0",
"size": "dynamic",
"encryption": "aes-xts-plain64",
"sector_size": 512

}
},
"config": {

"json_size": "12288",
"keyslots_size": "16744448"

},
…

22/30



LUKS2’s on-disk format, JSON (2/4)

"digests": {
"0": {

"type": "pbkdf2",
"keyslots": [

"0"
],
"segments": [

"0"
],
"hash": "sha256",
"iterations": 87849,
"salt": "Pn5s5EfvYrLN7zXr06mV+wK7odLESB+vY/V30eKH4SY=",
"digest": "cBtlnzUXkqGlLKAUMIN8DkOF8SsUXX1rIHjFP2gayVo="

}
},

}

23/30



LUKS2’s on-disk format, JSON (3/4)

"keyslots": {
"0": {

"type": "luks2",
"key_size": 64,
"af": {

"type": "luks1",
"stripes": 4000,
"hash": "sha256"

},
"area": {

"type": "raw",
"offset": "32768",
"size": "258048",
"encryption": "aes-xts-plain64",
"key_size": 64

},

24/30



LUKS2’s on-disk format, JSON (4/4)

"kdf": {
"type": "argon2i",
"time": 4,
"memory": 505358,
"cpus": 1,
"salt": "tXXj5Kb/uAjSJySNriF4pO16qmcEKBD2ai4Hkcabbgk="

} …

25/30



Needed extra libraries

First clue:
▶ cryptsetup maintainers contacting the installer team

(debian-boot@lists.debian.org)
▶ switch to cryptsetup 2.x: new udebs for cryptsetup-udeb/libcryptsetup12-udeb

▶ libargon2-1-udeb (from src:argon2)
▶ libjson-c3-udeb (from src:json-c)

26/30



Challenges with JSON

First attempt:
▶ try and link json-c’s static library into GRUB: failure…
▶ needs C headers that are no provided by GRUB: system headers are disabled

possible work around: use the extra headers in grub-core/lib/posix_wrap
▶ linking extra libraries into libgrubkern: not trivial → looking for alternatives

Second attempt: jsmn
▶ single-file C header, no linking issue
▶ unfortunately, only a tokenizer: no data structure

27/30



Challenges with Argon2

Argon2:
▶ key derivation function (similar to PBKDF2), but much more recent (2017 vs. 2000)
▶ from the paper: “the memory-hard function for password hashing and other applications”
▶ from experiments on this laptop: luksOpen requires 600+ MiB
▶ thankfully it seems GRUB2 should be able to allocate up to 4 GiB

Integration challenges:
▶ namespace pollution in static library: libargon2.a
▶ would benefit from a linker script: no libtool yet (ar rcs …)
▶ needs C headers that are no provided by GRUB: system headers are disabled
▶ linking extra libraries into libgrubkern: not trivial

possible work around: embedded needed src:argon2 files into src:grub2 (PoC-only!)

28/30



Game plans (1/2)

Current plan for GRUB:
▶ document my findings on the upstream bug report
▶ make sure it’s possible to link against argon2
▶ leverage jsmn to get structured data for the JSON-based config
▶ use that in configure_ciphers() and luks_recover_key()

→ to allow LUKS2 with pbkdf2 at least
▶ if that works, switch luks_recover_key() to using argon2 calls

→ to allow LUKS2 with argon2i (default) and argon2d

29/30



Game plans (2/2)

Current plan for Debian/Buster:
▶ document the current LUKS2 vs. GRUB’s cryptodisk no-go

→ current RC bug placeholder: https://bugs.debian.org/927165
▶ implement a new partman-crypto parameter

→ users can force LUKS1
▶ update installation guide accordingly
▶ also mention a LUKS2-to-LUKS1 conversion command

→ helping people who read the doc, but too late

Extra plan, thanks to Guilhem Moulin:
▶ avoid move-/boot-to-root-filesystem dance
▶ re-format /boot with LUKS1 instead
▶ then enable cryptodisk support

30/30

https://bugs.debian.org/927165


Thanks for your attention!

More Debian-related write-ups and news:
▶ https://debamax.com/blog/
▶ Twitter : @debamax et @CyrilBrulebois

Questions are welcome!

Many thanks to Guilhem Moulin for the fun, the challenges, and the help!

https://debamax.com/blog/

