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General opinions on
programming languages

● Must interface with C well. (Or maybe Java …. )
● Must have a very significant advantage

– For example, python is:
● Very fast to develop / Very easy to test ….

● Must be able to do all the common tasks I need.
– So must have good libraries for:

● Testing, CLI, RDBMS, Logging, JSON, etc …

– I test all of these use cases before I can recommend. 

● Rust passes my evaluation with flying colours!
– Otherwise I would not give this talk.
– Very different advantages than python.



  

Why I like Python

● Fast to write.
● Quick to debug.
● Fast enough for most use cases. 

– Approximately 100x slower than C

● Duck typing makes it succinct.
● Good enough error handling.
● I like “Python OO” better than “C++ OO”.
● Tooling/Packaging is quick.

– Tox, virtual env, pytest, and mock make testing a pleasure.
– Sadly had to learn much python magic in setup.py
– Making rpm / debian package is easy.



  

With python you have compromises

● Multithreading
– GIL (Global Interpretor Lock) is sometimes a blocking issue.

● Performance
● Embedded

– OpenWRT

● Memory Usage
– On router or phone.

● Python SWIG issues between 2 and 3.
– M2crypto only just started working with python 3 (Hmm.. maybe I was wrong)

● Bugs in large projects
– Sometimes python just ignores bad code and uses an alternative path!

● I have not seen this recently but it was true in past.



  

Working around Python limitations.

● Revolutionary:
– Rewrite Python code “prototype/production” as C/C++/D/ADA/Go/Rust ...

● Incremental:
– Python extensions.

● Native C binding
– https://docs.python.org/3/extending/building.html

● Swig can automate wrapping of C methods. (auto-generated code dangers)
● Ideally integrated in setup.py

– C++ with PyCXX
– Rust with PyO3
– Go with go-pymodule

– Pythons FFI can call C methods.
● Allows C/C++



  

What makes me avoid C?

● Development is very slow.
● Debugging is hard.
● Multithreading is hard.
● Compiler errors.
● Memory management issues.

– Often only appear in production.



  

What makes me avoid C++?

● No stable ABI
– Have to do work with C interfaces.

● Development is slow.
● Debugging is hard.
● Multithreading is hard.
● Compiler errors.
● Memory management issues.

– Although this is easier with modern C++ eg C++17



  

Why did I Try Rust?

● I heard great things about rust. (CCC and FOSDEM)
– Borrow checking?

● Native and compiled use cases.
● Extending python.
● To be as fast as C/C++ when needed.

– C++ like philosophy
● Abstraction without overhead.

– No Garbage Collection due to borrow checking?
● Language can be realtime.
● No runtime environment

● Maybe rust helps with multithreading?
● Maybe 10 years after python something new came out?

– Rust was first announced approximately ten years after python.



  

Rust: Interesting design decisions

● Designed to replace C/C++ in Firefox.
– Designed for incremental adoption in C/C++ code.

● Zero abstraction overhead philosophy just like C++.
● No garbage collector → but has a borrow checker!
● Multithreaded support baked into type system.

– Compiling guarantees thread safety.
● As example ‘Mutex locking’ is implemented as a generic type:  std::sync::Mutex<T>

– So you have to use the mutex lock to get access to data, and unlocks automatically as leaves scope.

● Variables are immutable by default.
– Sadly we can not add this to C/C++ now.

● Enumerated types can contain variables.
– Common in modern languages → Implications are surprising and good.

● The ML family of languages had this back in the day.

● Keep the language small, and flexible.
– The standard rust libraries are in Rust and optional.



  

My first experiences of Rust

● Lots in rust is unfamiliar to me.
– Rustup (Tool chain updater)
– Cargo (Dependency management)
– Structures +Traits Vs Objects (Why reinvent wheel?)
– Error handling (No exceptions!)
– Compiler (LLVM rather than gcc)
– The borrow checker (This seems revolutionary!) 

● Maturity questions worried me.
– Rust stable, tool chain etc
– Rust crates, are their enough doing useful things.



  

Rust: Rustup

● The “default” way to get rust development tools.
● Install downloads and executes stuff from web.

– Not very happy about this.
– Can see advantages for a language development.
– Can see advantages for a language not yet packaged.

● Can be avoided for rust stable.
– Distros are now packaging some of the rust tools.

● Rust and cargo now packaged for SL7, Fedora, SUSE, and debian testing

● If you use rust nightly or cross compilation you will want rustup.
– You may still need rust nightly (see later in talk)



  

Rust: Cargo

● Downloads and builds dependencies.
– Expects internet connection
– With nightly we have cargo-vendor

● So can build off line / Repeatable builds.
● Update: Update: has now reached stablehas now reached stable :) :)

● Simple to use.
– But too simple for some use cases.

● Can be called by auto-tools (not tried with cmake)
– When you need some thing cargo can’t do natively.

● Eg make template files, check C libraries and headers are installed.

● autogenerate code with cargo build process.
– Build.rs file compiles and runs before rest of cargo process.
– Bindgen which wraps C is a great example (Many others exist) 



  

Rust: Compiler

● Error messages are mostly very helpful.
– Many times even propose correct solution to issue.

● Macros show errors before being expanded.
– Unlike C++ can find your mistake fast

● Do not get pages of compile errors.

● Slow compile speeds.
– Slightly worse than very template heavy C++.
– No where need the speed of golang compiler

● Borrow checker is lovely
– But compiler does feel like it is mean at first.



  

Rust: Error Handling

● Rust does not have exceptions like C++/python.
● Error handling is encouraged by language.

– Not forced but ..

● Unrecoverable errors like assert in C.
– !Panic → Gives stack trace if compiled with debug flag.

● Recoverable errors like like C but better.
– Makes use of enumerated types.

● Result<T,E> → Great abstraction for normal path errors.
● Rather like C but safer.

● Error handling does seems verbose.
– Macros, “?”,  and libraries like ErrorChain remove lots of boilerplate



  

Rust: is not quiet OO.

● Seem to provide what I want from Object Orientated.
– But does not support inheritance.
– Use the “Has a” not “Is a” model.

● Structures can have methods.
– Methods can be added outside the library.

● Traits allow methods for more than one structure.
– Seems clearer in code than Polymorphic Objects.
– Traits can be added outside the library.

● Have yet to see down side.



  

Rust examples of OO like features.
Binding method to structure



  

Rust examples of OO like features.
Traits: A common method to multiple types



  

Rust examples of OO like features.
Using serde macros on structs



  

Rust: Borrow checker
● Ownership of variables/memory is part of the type system.

– Only one mutable owner of data at a time.
– Functions can borrow ownership of variables/memory

● Manages lifetime of variables/memory.
– Prevents references after variables/memory is moved or dropped.

● More general solution than reference counting.

● Like “garbage collection at compile time.”
– Reduces development time and bugs.
– Allows for real time code.

● Thread safe checking at compile time
● Does not need a run time garbage collection.

– Rust executables are larger than C but smaller than Go.

● Think of it like C++ static analysis built into the language with advantages.
– To provide memory management.
– To provide thread safety.

● Apple’s new “swift” language will get a borrow checker in next version too!



  

Using pyo3 to embed rust in python

● Pros:
– Very fast execution
– Allows multithreading
– Very easy
– Get rust safety
– Macros do all hard work
– Use setup.py to make it transparent

● Cons:
– Only works with rust nightly
– Need to install library to make setup.py work
– API had changed with latest release (but it is for the better...)



  

Embedding rust in python using pyo3 
Rust code called by python Python tests calling rust methods

__init__.py for rust module

File list of example python 
module in rust

Examples from pyo3 git repository: https://github.com/PyO3/pyo3/tree/master/examples/word-count

https://github.com/PyO3/pyo3/tree/master/examples/word-count


  

Rust: Issues I have found

● Only implemented on LLVM compiler.
– Not 100% self supporting.

● Must use C-ABI, no compiler neutral ABI
– Just like C++.
– Very little work to make Rust export a C ABI

● Just use some macros on functions and structures with C compatible types.

● Rust is not easy to learn.
– While simpler than C++ it is much harder to get started with than python.
– Mostly due to not allowing you to compile code that could have undefined behaviour.
– Some design patterns have to be adjusted.

● By default cargo downloads dependencies from internet.
– Hence repeatable builds more complex than C/C++.
– Cargo has vendorise in rust nightly.

● Update → In stable now for a few months.



  

Rust: Issues I have found

● Async IO story is only just maturing.
– Tokio,  Futures, generators (Libraries From stable, new, and experimental)

● Some things require Rust nightly (Was Many)
– Incremental builds only just reached stable.

● To speed compile time

– Meta-programing tools. (ie code about code)
● PyO3, mocking libraries, etc
● I can see progress here

● Writing “unsafe” rust (when you cant use rust safety eg linking to C)
– When using “unsafe” keyword rust compiler does not help me over C.
– Fortunately not often needed.



  

Rust: Issues for a Python dev.

● Because I am coming from python
– Rust syntax: treatment of ‘;’ is annoying

● Line without ‘;’ is function return value.
– If function returns no values will terminate function.
– Can produce misleading type errors in compiler output.

– Mocking in python is so nice
● Have to mock more code in static compiled languages.

– ipython (interactive python) is very helpful
● Unmatched as a quick way to explore a libraries/API.

– Rust is more verbose than python.



  

So why do I like rust?

● Fast to write code (not as fast as python).
● Easy to embed in python with pyo3 (https://github.com/PyO3/pyo3)

– Needs to use rust nightly
– Maybe too bleading edge for production.

● Compiling code nearly always does what you expect first time. (Unlike 
Python/C)

● Executes very fast, uses little memory, and produces smallish libraries and 
executables.

● Has a great set of libraries that allow me to get things done.
– Many inspired by C++ and python.

● Designed for incremental adoption.
– Look to “libsvg” for great blogs and talks on this.

https://github.com/PyO3/pyo3


  

So why do I like rust?

● Designed for incremental adoption.
– Look to “libsvg” for great blogs and talks on this.

● Rust is a nearly “universal language”.
– Can replace C/C++ for most use cases.

● If you can use LLVM compiler, I believe you can use rust rather than C/C++.

● Consistent and Succinct language
– Type inference and many other tricks.
– Type system is great.
– Generics are well supported.
– No null exceptions

● Borrow checker is a great compromise.
– Makes me feel safe in my code.
– Prefer this to a garbage collector for a low level language.
– Eases binding to other languages. eg C/python …
– Makes you concerned when writing C/C++



  

Why would a python developer learn rust,
when there are no jobs in it?

● Rust is growing fast.
– Still young (1.0 release was May 15, 2015)
– Some jobs adverts now exist. (was not true a year ago)
– Some metric put it in top 20 Languages (most in top 30)

● The “Most Loved” programming language.
– For the third year in a row, Stack overflow survey.

● A great way to extend python/C/C++ projects.
● While C++ 17 seems a great improvement

– I prefer what rust has to offer.

● Rust has yet to disappoint me.



  

References
● Rust home page

– https://www.rust-lang.org/en-US/

● Rust libraries
– https://crates.io/

● Binding C from rust
– https://rust-lang-nursery.github.io/rust-bindgen/introduction.html

● Binding rust from python
– https://github.com/PyO3/pyo3

● Great tour of rust features
– http://zsiciarz.github.io/24daysofrust/

● Libsvg and its migration from C/C++ to rust
– https://people.gnome.org/~federico/blog/librsvg-posts.html

● Using ECS to do simulations for game dev in rust
– https://www.youtube.com/watch?v=aKLntZcp27M

● Companies using rust in production
– https://www.rust-lang.org/en-US/friends.html

https://www.rust-lang.org/en-US/
https://crates.io/
https://rust-lang-nursery.github.io/rust-bindgen/introduction.html
https://github.com/PyO3/pyo3
http://zsiciarz.github.io/24daysofrust/
https://people.gnome.org/~federico/blog/librsvg-posts.html
https://www.youtube.com/watch?v=aKLntZcp27M
https://www.rust-lang.org/en-US/friends.html


  

Some big companies using rust in production.

Rewrote OSD’s, erasure coding, and Bulk data transfers
in rust from Golang.

Use Rust in a service for analysing petabytes of source 
code. 

Replacing C and rewriting performance-critical 
bottlenecks in the registry service architecture.

Replacing memory-unsafe languages (particularly C) 
and are using it in the core edge logic.



  

Questions

● Expected questions:
– Is rust mature enough for HEP(iX) to use?
– Would you recommend HEP(iX) uses rust?
– Will rust replace python/C/C++/Golang?
– When would I use rust?
– How would I compare rust with C/C++/Golang?

● Performance, memory usage, speed, stability?
● Maturity, toolchain, libraries, magic?

– When do you need to use “unsafe” in rust?
– Any lessons learnt from Multithreading in rust?
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