
How sipgate Uses Debian
And Other Open Source

Software

Rudolph Bott
@rbo_ne

Cenk Kücük
@_ifthenelse_

sipgate?

Technical Facts
● ~700 servers

○ ~250 are bare metal (mostly telephony-related, databases, virtualisation, infrastructure)

● all servers are Debian based
○ except those few nasty office-related services

● client systems: Apple with macOS or Lenovo Thinkpads with Ubuntu
● Windows (test) environments provided via AWS Workspaces

Technical Facts
● ~700 servers

○ ~250 are bare metal (mostly telephony-related, databases, virtualisation, infrastructure)

● all servers are Debian based
○ except those few nasty office-related services

● client systems: Apple with macOS or Lenovo Thinkpads with Ubuntu
● Windows (test) environments provided via AWS Workspaces

hiera nginx haproxy postfix pacemaker squid gopass qemu
GCC openjdk WildFly composer consul ansible git quagga vert.x
strongswan ImageMagick yate cfssl maven jenkins-debian-glue
gradle ulogd nodejs bacula kafka iptables ganeti luks homer
openvpn logstash foreman kamailio material-ui make beaver
drbd ucarp lighttpd syslog-ng terraform jenkins MySQL kibana
OpenNTPD npm openLDAP exim Akka fail2ban puppet asterisk
traefik OpenSSH Galera rtpengine swagger MongoDB Grafana
JUnit freeradius gnupg icinga Metabase react vagrant docker
keycloak bird cyrus telegraf InfluxDB maxwell apache
Wordpress Mockito elasticsearch kerberos ntopng yarn redis

hiera nginx haproxy postfix pacemaker squid gopass qemu
GCC openjdk WildFly composer consul ansible git quagga vert.x
strongswan ImageMagick yate cfssl maven jenkins-debian-glue
gradle ulogd nodejs bacula kafka iptables ganeti luks homer
openvpn logstash foreman kamailio material-ui make beaver
drbd ucarp lighttpd syslog-ng terraform jenkins MySQL kibana
OpenNTPD npm openLDAP exim Akka fail2ban puppet asterisk
traefik OpenSSH Galera rtpengine swagger MongoDB Grafana
JUnit freeradius gnupg icinga Metabase react vagrant docker
keycloak bird cyrus telegraf InfluxDB maxwell apache
Wordpress Mockito elasticsearch kerberos ntopng yarn redis

Next up
● Debian Packaging (or: How we deploy our applications)
● Unattended Upgrades (or: How we keep our systems up-to-date)
● cfssl (or: How to run your own CA)
● ganeti (or: How we play the virtualisation game)
● ELK Stack (or: How we help our colleagues access logs)

How we deploy our applications

$ git push webhook

sign & upload

deploy

clone & build

jenkins-debian-glue

How we deploy our applications

But, but….how many Jenkins jobs do you have?

How we deploy our applications

Use Jenkins Job Builder:
https://opendev.org/jjb/jenkins-job-builder/

How we deploy our applications
● first reprepro, later switched to aptly

○ rollback after failed deployments required multiple versions of each package

● numbers of unique packages per Debian version:
○ wheezy: 206 (1026)
○ jessie: 322 (1599)
○ stretch: 187 (728)

● sipgate’s own applications, but also third-party software because
○ it is not available in Debian and no repository maintained by the author exists
○ the version available in Debian (-backports) is too old
○ we require extra patches/build flags

● minimum Ansible version 2.7
● Ansible/Deployment Repository: ~13k commits from ~70 contributors
● 285 playbooks
● 275 roles
● 25 custom modules
● used for service deployment, server setup, local dev setups, maintenance
● Server backups? No Sir! (well, it depends)

How we deploy our applications

Unattended Upgrades - why
● stay up to date
● security threats
● performance improvements
● smaller changes are better than bigger changes
● eliminate toil

○ doing repetitive task manually → mistakes

Unattended Upgrades - how
● cronjob

○ day/ night
○ day of week

● only 1 host of a host group per day
● wrapper around unattended-upgrades

Unattended Upgrades - how
● Pre-upgrade tasks

○ check for locks
○ set lock
○ set downtime in the monitoring
○ service specific maintenance tasks

■ deregister from the load balancer
■ do not accept new phone calls and wait them to finish

Unattended Upgrades - how

Unattended Upgrades - how
● Post-reboot tasks

○ service specific maintenance tasks
■ register at the load balancer
■ start accepting new phone calls

○ remove lock

Unattended Upgrades
● 4670 reboots via unattended upgrades between October 2018 - May 2019

○ ~ 583 reboots/month
○ ~ 19 reboots/day

● global kill switch
● legacy software
● not every package creates /run/reboot-required
● updated libraries do not restart services

without any impact on our platform!

How to run your own CA
● what do we need certificates for?

○ internal or development websites / services
○ backup (bacula)
○ TLS syslog (syslog-ng)
○ databases (mysql)
○ ...you name it.

● so… you do know Let’s Encrypt is a thing, right?
○ yes, but we cannot use any of the available validation challenges

● but LE is open source, why not use that?
○ open source, but not ready for “home use”
○ essentially a wrapper around cfssl which adds registration/validation. Do we need that?

■ https://github.com/cloudflare/cfssl

How to run your own CA
● basic assumptions

○ our root CA lives offline and runs for a very long time (e.g. 100 years)
○ we use intermediate online CAs for signing, which are valid for one year
○ certificates are only valid for three months (or: until the intermediate CA expires)
○ the CA only issues certificates for a known set of domain names
○ certificates must be renewed automatically (along with service restart/reload)
○ the root CA will be auto-deployed to all relevant systems/keystores (linux servers,

workstations, java keystores, macOs clients etc.)
○ all services need to ship the current intermediate CA along with the certificate

How to run your own CA

PostgreSQL DB

nginx (handling TLS & static file delivery)
cfssl API backend
consul node

traefik (generic internal service loadbalancer)
consul node

Clients

How to run your own CA
● how does my $service receive a certificate + auto-renewal?

- name: Deploy $service certificate config

 include: service_certificate.yml

 vars:

service_name: $service

service_certificate_fqdn: "{{ inventory_hostname }}"

service_certificate_restart_cmd: "service $service restart"

How to run your own CA
● lessons learned: there is no ‘standard way’ to provide certs/keys:

○ $service-$hostname-bundle-cert-key.pem
○ $service-$hostname-bundle-key-cert.pem
○ $service-$hostname-cert-bundle-key.pem
○ $service-$hostname-cert-key-bundle.pem
○ $service-$hostname-cert-key-dhparam.pem
○ $service-$hostname-key-bundle-cert.pem
○ $service-$hostname-key-cert-bundle.pem
○ $service-$hostname-key.pem
○ $service-$hostname-bundle-cert.pem
○ $service-$hostname-bundle.pem
○ $service-$hostname-cert-bundle.pem
○ $service-$hostname-cert.pem

How to run your own CA
● how does the renewal work?

○ a cronjob runs each day between 11 and 12am and checks all configured certificates
○ a certificate will be replaced 10 days ahead of expiry
○ after retrieving the new certificate, the restart/reload command will be triggered

● security aspects
○ certificates are only issued for whitelisted domains (built-in cfssl feature)
○ short-lived certificates are better than long-lived ones
○ “authentication” is only available on a network level - KISS and “good enough”
○ credentials or client certificates make things more complicated and would have to be stored on

all servers and could leak

How to run your own CA

cfssl=> select count(*) from certificates;

 count

 15057

(1 row)

How we play the virtualisation game
● Ganeti

○ cluster management tool for VMs
○ Xen, KVM or LXC
○ shared nothing cluster with job management
○ management: CLI or ganeti control center (webfrontend written in PHP)

■ https://github.com/sipgate/ganeti-control-center

How we play the virtualisation game
● three ganeti clusters with

○ 31 nodes
○ 427 instances
○ 608 physical CPU cores
○ 3.4 TB of memory

● DRBD replication to ensure instance availability
● node groups to bundle different hardware generations
● separate network for disk replication/live migration
● instance distribution: hbal/hail & exclusion tags

How we play the virtualisation game
● current state of ganeti: Google has mostly stopped active development

“Ganeti 2.16.1 was released today (yes, on April 1). This is a bugfix
and compatibility release, aiming mostly at making Ganeti usable out
of the box on current Linux environments. This is also the first
release done outside Google, who were kind enough to grant commit
access to external contributors. “

● live migration - Java applications sometimes end up in a broken state

GanetiCon 2019
18th & 19th of June

 Umeå/Sweden
https://ganeticon.org/

ELK-Stack
● Elasticsearch, Logstash and Kibana
● actually, there is also redis and beaver (BLERK?)

ELK-Stack

ELK-Stack: lessons learned
● if you need an elasticsearch cluster, go for many smaller nodes
● if you allocate more than 32GB memory to elasticsearch, things will actually

get worse, unless you have > 48 GB of memory
○ https://linux.m2osw.com/compressed-ordinary-object-pointers-java-64bit-jvm

● do not retain the original message after parsing it with logstash (grok et al)
unless you really need it

● consider spawning simple automated “ELK-in-a-box” setups (e.g. with
Ansible) VMs instead of larger clusters to store your data

○ easier upgrade of the stack (more servers/work but less risk to break a bunch of dashboards
at the same time)

ELK: Everyday Dashboard Examples

ELK-Stack: Postfix/Mail Logging
● simply forward your mail.log using beaver, filebeat etc.
● look for existing postfix grok parser configuration files
● makes it easier for e.g. customer service to debug customer mail problems

ELK-Stack: Postfix/Mail Logging
● simply forward your mail.log using beaver, filebeat etc.
● look for existing postfix grok parser configuration files
● makes it easier for e.g. customer service to debug customer mail problems

● isc-dhcpd logs to syslog only
● use (e.g.) syslog-ng to redirect dhcpd logging to a separate file:

destination df_dhcpd { file("/var/log/dhcpd/dhcpd.log" group(adm) perm(0640)); };

filter f_dhcpd {

 program("dhcpd");

};

log {

 source(s_all);

 filter(f_dhcpd);

 destination(df_dhcpd);

};

ELK-Stack: DHCP Dashboard

● isc-dhcpd logs to syslog only
● use (e.g.) syslog-ng to redirect dhcpd logging to a separate file:

destination df_dhcpd { file("/var/log/dhcpd/dhcpd.log" group(adm) perm(0640)); };

filter f_dhcpd {

 program("dhcpd");

};

log {

 source(s_all);

 filter(f_dhcpd);

 destination(df_dhcpd);

};

ELK-Stack: DHCP Dashboard

● freeradius does not log very line-by-line-parser-friendly
● it offers the linelog module which is able to log any request field to a

separate logfile
● add the information you need and use logstash’s CSV filter

ELK-Stack: Radius Dashboard

● freeradius does not log very line-by-line-parser-friendly
● it offers the linelog module which is able to log any request field to a

separate logfile
● add the information you need and use logstash’s CSV filter

ELK-Stack: Radius Dashboard

ELK-Stack: Firewall Logging
● use ulog (<= jessie) or nflog (>= stretch) for performance reasons
● use fine-grained blocking rules at the end of your chains and add log prefixes

to create traffic categories for later use in Kibana, e.g.:
○ EXT-to-INT
○ INT-to-INT
○ INT-to-EXT

iptables -A FORWARD --nflog-group 1 --nflog-prefix "INT-to-INT" -j NFLOG

iptables -A FORWARD --ulog-nlgroup 1 --ulog-prefix "INT-to-INT" --ulog-qthreshold 1 -j ULOG

ELK-Stack: Firewall Logging
● use ulog (<= jessie) or nflog (>= stretch) for performance reasons
● use fine-grained blocking rules at the end of your chains and add log prefixes

to create traffic categories for later use in Kibana, e.g.:
○ EXT-to-INT
○ INT-to-INT
○ INT-to-EXT

iptables -A FORWARD --nflog-group 1 --nflog-prefix "INT-to-INT" -j NFLOG

iptables -A FORWARD --ulog-nlgroup 1 --ulog-prefix "INT-to-INT" --ulog-qthreshold 1 -j ULOG

ELK-Stack: Unifi Wireless Logging
● configure your Unifi gear to send syslog to your logstash instance
● parse hostapd messages with a grok filter
● debug wireless client roaming/authentication methods used etc.

ELK-Stack: Unifi Wireless Logging
● configure your Unifi gear to send syslog to your logstash instance
● parse hostapd messages with a grok filter
● debug wireless client roaming/authentication methods used etc.

Thanks for listening.
Questions?

Image Links/Sources
● official logos of

○ Ansible - https://www.ansible.com/
○ Aptly - https://www.aptly.info/
○ Elasticsearch/Logstash - https://www.elastic.co/de/brand
○ Github - https://github.com
○ Jenkins - https://jenkins.io/
○ Redis - https://redis.io/

● https://media.giphy.com/media/1oJLpejP9jEvWQlZj4/giphy.gif
● https://giphy.com/gifs/lA3qoZE4TKQhi
● other Icons: the Noun Project - https://thenounproject.com/

